Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 500.896
Filter
1.
Physiol Res ; 73(2): 189-203, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710051

ABSTRACT

This comprehensive review explores the physiological and pathophysiological significance of VPS13A, a protein encoded by the VPS13A gene. The VPS13A gene is associated with Chorea-acanthocytosis (ChAc), a rare hereditary neurodegenerative disorder. The review covers essential aspects, beginning with the genetics of VPS13A, highlighting its role in the pathogenesis of ChAc, and addressing the spectrum of genetic variants involved. It delves into the structure and function of the VPS13A protein, emphasizing its presence in various tissues and its potential involvement in protein trafficking and lipid homeostasis. Molecular functions of VPS13A in the brain tissue and other cell types or tissues with respect to their role in cytoskeletal regulation and autophagy are explored. Finally, it explores the intriguing link between VPS13A mutations, lipid imbalances, and neurodegeneration, shedding light on future research directions. Overall, this review serves as a comprehensive resource for understanding the pivotal role of VPS13A in health and disease, particularly in the context of ChAc. Key words: Chorein , Tumor, Actin, Microfilament, Gene expression, Chorea-acanthocytosis.


Subject(s)
Neuroacanthocytosis , Vesicular Transport Proteins , Humans , Animals , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Neuroacanthocytosis/metabolism , Neuroacanthocytosis/genetics , Neuroacanthocytosis/physiopathology , Neuroacanthocytosis/pathology , Mutation , Lipid Metabolism/physiology , Lipid Metabolism/genetics
2.
Int J Immunopathol Pharmacol ; 38: 3946320241240706, 2024.
Article in English | MEDLINE | ID: mdl-38712735

ABSTRACT

Introduction: Bladder cancer represents a significant public health concern with diverse genetic alterations influencing disease onset, progression, and therapy response. In this study, we explore the multifaceted role of Solute Carrier Family 31 Member 1 (SLC31A1) in bladder cancer, a pivotal gene involved in copper homeostasis. Methods: Our research involved analyzing the SLC31A1 gene expression via RT-qPCR, promoter methylation via targeted bisulfite sequencing, and mutational status via Next Generation Sequencing (NGS) using the clinical samples sourced by the local bladder cancer patients. Later on, The Cancer Genome Atlas (TCGA) datasets were utilized for validation purposes. Moreover, prognostic significance, gene enrichment terms, and therapeutic drugs of SLC31A1 were also explored using KM Plotter, DAVID, and DrugBank databases. Results: We observed that SLC31A1 was significantly up-regulated at both the mRNA and protein levels in bladder cancer tissue samples, suggesting its potential involvement in bladder cancer development and progression. Furthermore, our investigation into the methylation status revealed that SLC31A1 was significantly hypomethylated in bladder cancer tissues, which may contribute to its overexpression. The ROC analysis of the SLC31A1 gene indicated promising diagnostic potential, emphasizing its relevance in distinguishing bladder cancer patients from normal individuals. However, it is crucial to consider other factors such as cancer stage, metastasis, and recurrence for a more accurate evaluation in the clinical context. Interestingly, mutational analysis of SLC31A1 demonstrated only benign mutations, indicating their unknown role in the SLC31A1 disruption. In addition to its diagnostic value, high SLC31A1 expression was associated with poorer overall survival (OS) in bladder cancer patients, shedding light on its prognostic relevance. Gene enrichment analysis indicated that SLC31A1 could influence metabolic and copper-related processes, further underscoring its role in bladder cancer. Lastly, we explored the DrugBank database to identify potential therapeutic agents capable of reducing SLC31A1 expression. Our findings unveiled six important drugs with the potential to target SLC31A1 as a treatment strategy. Conclusion: Our comprehensive investigation highlights SLC31A1 as a promising biomarker for bladder cancer development, progression, and therapy.


Subject(s)
Copper Transporter 1 , DNA Methylation , Disease Progression , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Copper Transporter 1/genetics , Copper Transporter 1/metabolism , Gene Expression Regulation, Neoplastic , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Promoter Regions, Genetic , Mutation , Middle Aged , Prognosis , Aged , Up-Regulation
3.
BMC Bioinformatics ; 25(1): 180, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720249

ABSTRACT

BACKGROUND: High-throughput sequencing (HTS) has become the gold standard approach for variant analysis in cancer research. However, somatic variants may occur at low fractions due to contamination from normal cells or tumor heterogeneity; this poses a significant challenge for standard HTS analysis pipelines. The problem is exacerbated in scenarios with minimal tumor DNA, such as circulating tumor DNA in plasma. Assessing sensitivity and detection of HTS approaches in such cases is paramount, but time-consuming and expensive: specialized experimental protocols and a sufficient quantity of samples are required for processing and analysis. To overcome these limitations, we propose a new computational approach specifically designed for the generation of artificial datasets suitable for this task, simulating ultra-deep targeted sequencing data with low-fraction variants and demonstrating their effectiveness in benchmarking low-fraction variant calling. RESULTS: Our approach enables the generation of artificial raw reads that mimic real data without relying on pre-existing data by using NEAT, a fine-grained read simulator that generates artificial datasets using models learned from multiple different datasets. Then, it incorporates low-fraction variants to simulate somatic mutations in samples with minimal tumor DNA content. To prove the suitability of the created artificial datasets for low-fraction variant calling benchmarking, we used them as ground truth to evaluate the performance of widely-used variant calling algorithms: they allowed us to define tuned parameter values of major variant callers, considerably improving their detection of very low-fraction variants. CONCLUSIONS: Our findings highlight both the pivotal role of our approach in creating adequate artificial datasets with low tumor fraction, facilitating rapid prototyping and benchmarking of algorithms for such dataset type, as well as the important need of advancing low-fraction variant calling techniques.


Subject(s)
Benchmarking , High-Throughput Nucleotide Sequencing , Neoplasms , High-Throughput Nucleotide Sequencing/methods , Humans , Neoplasms/genetics , Mutation , Algorithms , DNA, Neoplasm/genetics , Sequence Analysis, DNA/methods , Computational Biology/methods
4.
Malar J ; 23(1): 138, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720269

ABSTRACT

BACKGROUND: Artemisinin resistance in Plasmodium falciparum threatens global malaria elimination efforts. To contain and then eliminate artemisinin resistance in Eastern Myanmar a network of community-based malaria posts was instituted and targeted mass drug administration (MDA) with dihydroartemisinin-piperaquine (three rounds at monthly intervals) was conducted. The prevalence of artemisinin resistance during the elimination campaign (2013-2019) was characterized. METHODS: Throughout the six-year campaign Plasmodium falciparum positive blood samples from symptomatic patients and from cross-sectional surveys were genotyped for mutations in kelch-13-a molecular marker of artemisinin resistance. RESULT: The program resulted in near elimination of falciparum malaria. Of 5162 P. falciparum positive blood samples genotyped, 3281 (63.6%) had K13 mutations. The prevalence of K13 mutations was 73.9% in 2013 and 64.4% in 2019. Overall, there was a small but significant decline in the proportion of K13 mutants (p < 0.001). In the MDA villages there was no significant change in the K13 proportions before and after MDA. The distribution of different K13 mutations changed substantially; F446I and P441L mutations increased in both MDA and non-MDA villages, while most other K13 mutations decreased. The proportion of C580Y mutations fell from 9.2% (43/467) before MDA to 2.3% (19/813) after MDA (p < 0.001). Similar changes occurred in the 487 villages where MDA was not conducted. CONCLUSION: The malaria elimination program in Kayin state, eastern Myanmar, led to a substantial reduction in falciparum malaria. Despite the intense use of artemisinin-based combination therapies, both in treatment and MDA, this did not select for artemisinin resistance.


Subject(s)
Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Artemisinins/pharmacology , Artemisinins/therapeutic use , Myanmar , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Humans , Cross-Sectional Studies , Female , Male , Adolescent , Adult , Mass Drug Administration , Young Adult , Mutation , Child , Child, Preschool , Middle Aged , Quinolines/pharmacology , Quinolines/therapeutic use , Disease Eradication/statistics & numerical data , Piperazines
5.
Eur J Med Res ; 29(1): 273, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720348

ABSTRACT

BACKGROUND: Previous studies suggested that zinc finger protein 536 (ZNF536) was abundant in the central brain and regulated neuronal differentiation. However, the role of ZNF536 in cancer has remained unclear. METHODS: ZNF536 mutation, copy number alteration, DNA methylation, and RNA expression were explored using public portals. Data from The Cancer Genome Atlas (TCGA) were utilized to analyze pathways and tumor microenvironment (TME), with a focus on prognosis in both TCGA and immunotherapy pan-cancer cohorts. Methylated ZNF536 from small cell lung cancer (SCLC) cell lines were utilized to train with probes for conducting enrichment analysis. Single-cell RNA profile demonstrated the sublocalization and co-expression of ZNF536, and validated its targets by qPCR. RESULTS: Genetic alterations in ZNF536 were found to be high-frequency and a single sample could harbor different variations. ZNF536 at chromosome 19q12 exerted a bypass effect on CCNE1, supported by CRISPR data. For lung cancer, ZNF536 mutation was associated with longer survival in primary lung adenocarcinoma (LUAD), but its prognosis was poor in metastatic LUAD and SCLC. Importantly, ZNF536 mutation and amplification had opposite prognoses in Stand Up To Cancer-Mark Foundation (SU2C-MARK) LUAD cohort. ZNF536 mutation altered the patterns of genomic alterations in tumors, and had distinct impacts on the signaling pathways and TME compared to ZNF536 amplification. Additionally, ZNF536 expression was predominantly in endocrine tumors and brain tissues. High-dimensional analysis supported this finding and further revealed regulators of ZNF536. Considering that the methylation of ZNF536 was involved in the synaptic pathway associated with neuroendocrine neoplasms, demonstrating both diagnostic and prognostic value. Moreover, we experimentally verified ZNF536 upregulated neuroendocrine markers. CONCLUSIONS: Our results showed that ZNF536 alterations in cancer, including variations in copy number, mutation, and methylation. We proved the involvement of ZNF536 in neuroendocrine regulation, and identified highly altered ZNF536 as a potential biomarker for immunotherapy.


Subject(s)
Lung Neoplasms , Mutation , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Prognosis , DNA Methylation , Tumor Microenvironment/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , DNA Copy Number Variations , Gene Expression Regulation, Neoplastic
7.
Pancreas ; 53(5): e450-e465, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38728212

ABSTRACT

BACKGROUND AND OBJECTIVES: Pancreatic cancer is one of the most lethal malignancies. Even though many substantial improvements in the survival rates for other major cancer forms were made, pancreatic cancer survival rates have remained relatively unchanged since the 1960s. Even more, no standard classification system for pancreatic cancer is based on cellular biomarkers. This review will discuss and provide updates about the role of stem cells in the progression of PC, the genetic changes associated with it, and the promising biomarkers for diagnosis. MATERIALS AND METHODS: The search process used PubMed, Cochrane Library, and Scopus databases to identify the relevant and related articles. Articles had to be published in English to be considered. RESULTS: The increasing number of studies in recent years has revealed that the diversity of cancer-associated fibroblasts is far greater than previously acknowledged, which highlights the need for further research to better understand the various cancer-associated fibroblast subpopulations. Despite the huge diversity in pancreatic cancer, some common features can be noted to be shared among patients. Mutations involving CDKN2, P53, and K-RAS can be seen in a big number of patients, for example. Similarly, some patterns of genes and biomarkers expression and the level of their expression can help in predicting cancer behavior such as metastasis and drug resistance. The current trend in cancer research, especially with the advancement in technology, is to sequence everything in hopes of finding disease-related mutations. CONCLUSION: Optimizing pancreatic cancer treatment requires clear classification, understanding CAF roles, and exploring stroma reshaping approaches.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Disease Progression , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Mutation , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
8.
PLoS One ; 19(5): e0302856, 2024.
Article in English | MEDLINE | ID: mdl-38722955

ABSTRACT

Metastasis is the most dreaded outcome after a breast cancer diagnosis, and little is known regarding what triggers or promotes breast cancer to spread distally, or how to prevent or eradicate metastasis effectively. Bilateral breast cancers are an uncommon form of breast cancers. In our study, a percentage of bilateral breast cancers were clonally related based on copy number variation profiling. Whole exome sequencing and comparative sequence analysis revealed that a limited number of somatic mutations were acquired in this "breast-to-breast" metastasis that might promote breast cancer distant spread. One somatic mutation acquired was SIVA-D160N that displayed pro-metastatic phenotypes in vivo and in vitro. Over-expression of SIVA-D160N promoted migration and invasion of human MB-MDA-231 breast cancer cells in vitro, consistent with a dominant negative interfering function. When introduced via tail vein injection, 231 cells over-expressing SIVA-D160N displayed enhanced distant spread on IVIS imaging. Over-expression of SIVA-D160N promoted invasion and anchorage independent growth of mouse 4T1 breast cancer cells in vitro. When introduced orthotopically via mammary fat pad injection in syngeneic Balb/c mice, over-expression of SIVA-D160N in 4T1 cells increased orthotopically implanted mammary gland tumor growth as well as liver metastasis. Clonally related bilateral breast cancers represented a novel system to investigate metastasis and revealed a role of SIVA-D160N in breast cancer metastasis. Further characterization and understanding of SIVA function, and that of its interacting proteins, may elucidate mechanisms of breast cancer metastasis, providing clinically useful biomarkers and therapeutic targets.


Subject(s)
Breast Neoplasms , Neoplasm Metastasis , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Animals , Mice , Cell Line, Tumor , Neoplasm Invasiveness , Mutation , Cell Movement/genetics , Mice, Inbred BALB C , DNA Copy Number Variations
9.
Sci Rep ; 14(1): 10660, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724525

ABSTRACT

Influenza Like Illness (ILI) and Severe Acute Respiratory Infection (SARI) cases are more prone to Influenza and SARS-CoV-2 infection. Accordingly, we genetically characterized Influenza and SARS-CoV-2 in 633 ILI and SARI cases by rRT-PCR and WGS. ILI and SARI cases showed H1N1pdm09 prevalence of 20.9% and 23.2% respectively. 135 (21.3%) H1N1pdm09 and 23 (3.6%) H3N2 and 5 coinfection (0.78%) of H1N1pdm09 and SARS-CoV-2 were detected. Phylogenetic analysis revealed H1N1pdm09 resemblance to clade 6B.1A.5a.2 and their genetic relatedness to InfA/Perth/34/2020, InfA/Victoria/88/2020 and InfA/Victoria/2570/2019. Pan 24 HA and 26 NA nonsynonymous mutations and novel HA (G6D, Y7F, Y78H, P212L, G339R, T508K and S523T) and NA (S229A) mutations were observed. S74R, N129D, N156K, S162N, K163Q and S164T alter HA Cb and Sa antibody recognizing site. Similarly, M19T, V13T substitution and multiple mutations in transmembrane and NA head domain drive antigenic drift. SARS-CoV-2 strains genetically characterized to Omicron BA.2.75 lineage containing thirty nonsynonymous spike mutations exhibited enhanced virulence and transmission rates. Coinfection although detected very minimal, the mutational changes in H1N1pdm09 and SARS-CoV-2 virus infected individuals could alter antibody receptor binding sites, allowing the viruses to escape immune response resulting in better adaptability and transmission. Thus continuous genomic surveillance is required to tackle any future outbreak.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Phylogeny , SARS-CoV-2 , Humans , Influenza A Virus, H1N1 Subtype/genetics , SARS-CoV-2/genetics , Influenza, Human/virology , Influenza, Human/epidemiology , COVID-19/virology , COVID-19/epidemiology , Adult , Middle Aged , Male , Female , Adolescent , Young Adult , Genome, Viral/genetics , Aged , Coinfection/virology , Coinfection/epidemiology , Child , Child, Preschool , Severe Acute Respiratory Syndrome/virology , Severe Acute Respiratory Syndrome/epidemiology , Mutation , Infant
10.
Sci Rep ; 14(1): 10620, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724547

ABSTRACT

Although most people living with HIV (PLWH) receiving antiretroviral therapy (ART) achieve continuous viral suppression, some show detectable HIV RNA as low-level viremia (LLV) (50-999 copies/mL). Drug resistance mutations (DRMs) in PLWH with LLV is of particular concern as which may lead to treatment failure. In this study, we investigated the prevalence of LLV and LLV-associated DRMs in PLWH in Zhengzhou City, China. Of 3616 ART-experienced PLWH in a long-term follow-up cohort from Jan 2022 to Aug 2023, 120 were identified as having LLV. Of these PLWH with LLV, we obtained partial pol and integrase sequences from 104 (70 from HIV-1 RNA and 34 from proviral DNA) individuals. DRMs were identified in 44 individuals. Subtyping analysis indicated that the top three subtypes were B (48.08%, 50/104), CRF07_BC (31.73%, 33/104), and CRF01_AE (15.38%, 16/104). The proportions of nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), and integrase strand transfer inhibitors (INSTIs) associated DRMs were 23.83% (24/104), 35.58% (37/104), 5.77% (6/104), and 3.85% (4/104), respectively, which contributed to an overall prevalence of 42.31% (44/104). When analyzed by individual DRMs, the most common mutation(s) were V184 (18.27%, 19/104), followed by V179 (11.54%, 12/104), K103 (9.62%, 10/104), Y181 (9.62%, 10/104), M41 (7.69%, 8/104), and K65R (7.69%, 8/104). The prevalence of DRMs in ART-experienced PLWH with LLV is high in Zhengzhou City and continuous surveillance can facilitate early intervention and provision of effective treatment.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , Mutation , Viremia , Humans , HIV-1/genetics , HIV-1/drug effects , HIV Infections/drug therapy , HIV Infections/virology , HIV Infections/epidemiology , China/epidemiology , Drug Resistance, Viral/genetics , Male , Female , Viremia/drug therapy , Viremia/epidemiology , Adult , Middle Aged , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology , RNA, Viral/genetics
11.
Sci Rep ; 14(1): 10678, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724551

ABSTRACT

Mutations in LRBA, a BEACH domain protein, cause severe immune deficiency in humans. LRBA is expressed in many tissues and organs according to biochemical analysis, but little is known about its cellular and subcellular localization, and its deficiency phenotype outside the immune system. By LacZ histochemistry of Lrba gene-trap mice, we performed a comprehensive survey of LRBA expression in numerous tissues, detecting it in many if not all epithelia, in exocrine and endocrine cells, and in subpopulations of neurons. Immunofluorescence microscopy of the exocrine and endocrine pancreas, salivary glands, and intestinal segments, confirmed these patterns of cellular expression and provided information on the subcellular localizations of the LRBA protein. Immuno-electron microscopy demonstrated that in neurons and endocrine cells, which co-express LRBA and its closest relative, neurobeachin, both proteins display partial association with endomembranes in complementary, rather than overlapping, subcellular distributions. Prominent manifestations of human LRBA deficiency, such as inflammatory bowel disease or endocrinopathies, are believed to be primarily due to immune dysregulation. However, as essentially all affected tissues also express LRBA, it is possible that LRBA deficiency enhances their vulnerability and contributes to the pathogenesis.


Subject(s)
Endocrine Glands , Neurons , Animals , Neurons/metabolism , Mice , Humans , Endocrine Glands/metabolism , Exocrine Glands/metabolism , Mutation , Epithelium/metabolism , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism , Immunologic Deficiency Syndromes/pathology
12.
Sci Rep ; 14(1): 10654, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724579

ABSTRACT

Molecular mechanisms which underpin compound leaf development in some legumes have been reported, but there is no previous study on the molecular genetic control of compound leaf formation in Vigna unguiculata (cowpea), an important dryland legume of African origin. In most studied species with compound leaves, class 1 KNOTTED-LIKE HOMEOBOX genes expressed in developing leaf primordia sustain morphogenetic activity, allowing leaf dissection and the development of leaflets. Other genes, such as, SINGLE LEAFLET1 in Medicago truncatula and Trifoliate in Solanum lycopersicum, are also implicated in regulating compound leaf patterning. To set the pace for an in-depth understanding of the genetics of compound leaf development in cowpea, we applied RNA-seq and whole genome shotgun sequence datasets of a spontaneous cowpea unifoliate mutant and its trifoliate wild-type cultivar to conduct comparative reference-based gene expression, de novo genome-wide isoform switch, and genome variant analyses between the two genotypes. Our results suggest that genomic variants upstream of LATE ELONGATED HYPOCOTYL and down-stream of REVEILLE4, BRASSINOSTERIOD INSENSITIVE1 and LATERAL ORGAN BOUNDARIES result in down-regulation of key components of cowpea circadian rhythm central oscillator and brassinosteroid signaling, resulting in unifoliate leaves and brassinosteroid-deficient-like phenotypes. We have stated hypotheses that will guide follow-up studies expected to provide more insights.


Subject(s)
Gene Expression Regulation, Plant , Mutation , Plant Leaves , Vigna , Plant Leaves/genetics , Plant Leaves/growth & development , Vigna/genetics , Vigna/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Genomics/methods , Genome, Plant
13.
Mol Biomed ; 5(1): 17, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724687

ABSTRACT

Uveal cancer (UM) offers a complex molecular landscape characterized by substantial heterogeneity, both on the genetic and epigenetic levels. This heterogeneity plays a critical position in shaping the behavior and response to therapy for this uncommon ocular malignancy. Targeted treatments with gene-specific therapeutic molecules may prove useful in overcoming radiation resistance, however, the diverse molecular makeups of UM call for a patient-specific approach in therapy procedures. We need to understand the intricate molecular landscape of UM to develop targeted treatments customized to each patient's specific genetic mutations. One of the promising approaches is using liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), for detecting and monitoring the disease at the early stages. These non-invasive methods can help us identify the most effective treatment strategies for each patient. Single-cellular is a brand-new analysis platform that gives treasured insights into diagnosis, prognosis, and remedy. The incorporation of this data with known clinical and genomics information will give a better understanding of the complicated molecular mechanisms that UM diseases exploit. In this review, we focused on the heterogeneity and molecular panorama of UM, and to achieve this goal, the authors conducted an exhaustive literature evaluation spanning 1998 to 2023, using keywords like "uveal melanoma, "heterogeneity". "Targeted therapies"," "CTCs," and "single-cellular analysis".


Subject(s)
Genetic Heterogeneity , Melanoma , Molecular Targeted Therapy , Uveal Neoplasms , Humans , Melanoma/genetics , Melanoma/pathology , Melanoma/therapy , Melanoma/drug therapy , Molecular Targeted Therapy/methods , Uveal Neoplasms/genetics , Uveal Neoplasms/therapy , Uveal Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor/genetics , Mutation , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Liquid Biopsy/methods
14.
BMC Plant Biol ; 24(1): 384, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724935

ABSTRACT

BACKGROUND: Semi-dwarfing alleles are used widely in cereals to confer improved lodging resistance and assimilate partitioning. The most widely deployed semi-dwarfing alleles in rice and barley encode the gibberellin (GA)-biosynthetic enzyme GA 20-OXIDASE2 (GA20OX2). The hexaploid wheat genome carries three homoeologous copies of GA20OX2, and because of functional redundancy, loss-of-function alleles of a single homoeologue would not be selected in wheat breeding programmes. Instead, approximately 70% of wheat cultivars carry gain-of-function mutations in REDUCED HEIGHT 1 (RHT1) genes that encode negative growth regulators and are degraded in response to GA. Semi-dwarf Rht-B1b or Rht-D1b alleles encode proteins that are insensitive to GA-mediated degradation. However, because RHT1 is expressed ubiquitously these alleles have pleiotropic effects that confer undesirable traits in some environments. RESULTS: We have applied reverse genetics to combine loss-of-function alleles in all three homoeologues of wheat GA20OX2 and its paralogue GA20OX1 and evaluated their performance in three years of field trials. ga20ox1 mutants exhibited a mild height reduction (approximately 3%) suggesting GA20OX1 plays a minor role in stem elongation in wheat. ga20ox2 mutants have reduced GA1 content and are 12-32% shorter than their wild-type segregants, comparable to the effect of the Rht-D1b 'Green Revolution' allele. The ga20ox2 mutants showed no significant negative effects on yield components in the spring wheat variety 'Cadenza'. CONCLUSIONS: Our study demonstrates that chemical mutagenesis can expand genetic variation in polyploid crops to uncover novel alleles despite the difficulty in identifying appropriate mutations for some target genes and the negative effects of background mutations. Field experiments demonstrate that mutations in GA20OX2 reduce height in wheat, but it will be necessary to evaluate the effect of these alleles in different genetic backgrounds and environments to determine their value in wheat breeding as alternative semi-dwarfing alleles.


Subject(s)
Phenotype , Plant Proteins , Triticum , Triticum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Mutation , Oryza/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Alleles , Gibberellins/metabolism , Genes, Plant
15.
BMC Cancer ; 24(1): 574, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724991

ABSTRACT

BACKGROUND: Next-generation sequencing (NGS) has been introduced to many Korean institutions to support molecular diagnostics in cancer since 2017, when it became eligible for reimbursement by the National Health Insurance Service. However, the uptake of molecularly guided treatment (MGT) based on NGS results has been limited because of stringent regulations regarding prescriptions outside of approved indications, a lack of clinical trial opportunities, and limited access to molecular tumor boards (MTB) at most institutions. The KOSMOS-II study was designed to demonstrate the feasibility and effectiveness of MGT, informed by MTBs, using a nationwide precision medicine platform. METHODS: The KOSMOS-II trial is a large-scale nationwide master observational study. It involves a framework for screening patients with metastatic solid tumors for actionable genetic alterations based on local NGS testing. It recommends MGT through a remote and centralized MTB meeting held biweekly. MGT can include one of the following options: Tier 1, the therapeutic use of investigational drugs targeting genetic alterations such as ALK, EGFR, ERBB2, BRAF, FH, ROS1, and RET, or those with high tumor mutational burden; Tier 2, comprising drugs with approved indications or those permitted for treatment outside of the indications approved by the Health Insurance Review and Assessment Service of Korea; Tier 3, involving clinical trials matching the genetic alterations recommended by the MTB. Given the anticipated proportion of patients receiving MGT in the range of 50% ± 3.25%, this study aims to enroll 1,000 patients. Patients must have progressed to one or more lines of therapy and undergone NGS before enrollment. DISCUSSION: This pragmatic master protocol provides a mass-screening platform for rare genetic alterations and high-quality real-world data. Collateral clinical trials, translational studies, and clinico-genomic databases will contribute to generating evidence for drug repositioning and the development of new biomarkers. TRIAL REGISTRATION: NCT05525858.


Subject(s)
Molecular Targeted Therapy , Neoplasms , Precision Medicine , Humans , Precision Medicine/methods , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Republic of Korea , Molecular Targeted Therapy/methods , High-Throughput Nucleotide Sequencing/methods , Biomarkers, Tumor/genetics , Genomics/methods , Mutation , Observational Studies as Topic
16.
Medicine (Baltimore) ; 103(19): e38146, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728446

ABSTRACT

Breast cancer is a prevalent ailment among women, and the inflammatory response plays a crucial role in the management and prediction of breast cancer (BRCA). However, the new subtypes based on inflammation in BRCA research are still undefined. The databases including The Cancer Genome Atlas and gene expression omnibus were utilized to gather clinical data and somatic mutation information for approximately 1069 BRCA patients. Through Consensus Clustering, novel subtypes linked to inflammation were identified. A comparative analysis was conducted on the prognosis, and immune cell infiltration, and somatic mutation of the new subtypes. Additionally, an investigation into drug therapy and immunotherapy was conducted to distinguish high-risk individuals from low-risk ones. The findings of this investigation proposed the categorization of BRCA into innovative subtypes predicated on the inflammatory response and 6 key genes were a meaningful approach. Specifically, the low-, medium-, and high-inflammation subtypes exhibited varying degrees of association with clinicopathological features, tumor microenvironment, and prognosis. Notably, the high-inflammation subtype was characterized by a strong correlation with immunosuppressive microenvironments and a higher frequency of somatic mutations, which was an indication of poorer health. This study revealed that a brand-new classification could throw new light on the effective prognosis. The integration of multiple key genes was a new characterization that could promote more immunotherapy strategies and contribute to predicting the efficacy of the chemotherapeutic drugs.


Subject(s)
Breast Neoplasms , Inflammation , Tumor Microenvironment , Humans , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Female , Inflammation/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Prognosis , Mutation , Immunotherapy/methods , Middle Aged , Biomarkers, Tumor/genetics
19.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 340-345, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38733189

ABSTRACT

Objective: To analyze the distribution characteristics of UGT1A1 mutant genes (including enhancers, promoters, and exons 1-5) and further explore the correlation between UGT1A1 genotype and clinical phenotypes in patients with inherited hyperunconjugated bilirubinemia. Methods: Patients diagnosed with hereditary hyperunconjugated bilirubinemia at Nanjing Second Hospital from June 2015 to December 2022 were retrospectively analyzed. The UGT1A1 gene was examined using Sanger sequencing in all patients. Complete blood count, liver function, and abdominal imaging examinations were performed. Comparison of categorical variable data using χ(2) testor Fisher percision tests. Comparison of continaous veriable data with normal distribution using t-test. Results: 112 cases (male:female ratio 81:31, aged 9-70 years) had inherited hyperunconjugated bilirubinemia, with a total of 14 mutation sites identified, of which seven were confirmed mutations, and the frequency ranged from high to low: (TA)n accounted for 50%, c.211G>A (p.G71R) accounted for 49.10%, 1456T>G (p.Y486D) accounted for 16.96%, c.686C>A (p.R229W) accounted for 12.5%, 1091C>T (p.P364L) accounted for 8.04%, and c- 3279T>G accounted for 0.982%. Simultaneously, all patients had one to four mutations, of which only one mutation was the most common (55.36%), followed by two mutations (37.5%), and rare three and four mutations (5.36% and 1.78%). There was no statistical significance in total bilirubin (TBil) levels among the four groups (F=0.652, P=0.583). One mutation was most common in (TA)n and c.211G>A (p.G71R), among which TA6/TA7 (n=10) and TA7/TA7 (n=14) mutations were statistically significant in TBil (t=2.143, P=0.043). The c.211G>A (p.G71R) heterozygous (n=9) and isolated (n=15) mutation had no statistical significance in TBil (t=0.382, P=0.706). The GS group accounted for 75%, the intermediate group accounted for 16.9%, and the CNS-Ⅱ group accounted for 8%. TBil was statistically significant among the three groups (F=270.992, P<0.001). There was no statistically significant difference (χ(2)=3.317, P=0.19) between mutation 1 (44 cases, 14 cases, and 4 cases, respectively) and mutations ≥ 2 (40 cases, 5 cases, and 5 cases, respectively) in the GS group, intermediate group, and CNS-II group. Conclusion: The number of UGT1A1 gene mutation sites may have no synergistic effect on TBil levels in patients with inherited hyperunconjugated bilirubinemia. TA7/TA7 mutations are not uncommon, and TBil levels are relatively high.


Subject(s)
Genotype , Glucuronosyltransferase , Mutation , Phenotype , Humans , Glucuronosyltransferase/genetics , Retrospective Studies , Hyperbilirubinemia, Hereditary/genetics , Bilirubin/blood , Male , Female , Exons , Adult
20.
Zhonghua Xue Ye Xue Za Zhi ; 45(3): 294-298, 2024 Mar 14.
Article in Chinese | MEDLINE | ID: mdl-38716603

ABSTRACT

A 34 year old female patient was scheduled to undergo surgical resection due to a "breast nodule". Preoperative examination revealed an activated partial thromboplastin time (APTT) of 66.2 seconds, coagulation factor Ⅺ activity (FⅪ: C) of 2%, and FⅪ antigen (FⅪ: Ag) of 40.3%. The patient and family members showed no abnormal bleeding symptoms. Diagnosed as hereditary coagulation factor Ⅺ deficiency. Genetic testing revealed that the F11 gene had a heterozygous nonsense mutation in exon 10, c.1107C>A (p.Tyr351stop), and a heterozygous missense mutation in exon 13, c.1562A>G (p.Tyr503Cys). The father and son were p Heterozygous carriers of Tyr351stop mutation, while the mother and daughter are p Heterozygous carriers of Tyr503Cys mutations. The in vitro expression results showed that p The Tyr351stop mutation resulted in a significant decrease in the transcription level of F11 gene, while p The Tyr503Cys mutation has no effect on the transcription level and protein expression level of F11 gene, but it leads to a significant decrease in the level of FⅪ:C in the cell culture supernatant.


Subject(s)
Heterozygote , Pedigree , Humans , Female , Adult , Mutation , Factor XI/genetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...